
COMP 646 Assignment 3

Christopher Hundt 110220945

December 6, 2004

Question 1

(a) These filters are bandpass. As the center of the band gets closer to 0 the half-height width must be
smaller to have a 1 octave bandwidth. The values of m that result in close to one octave bandwidth
for various values of k0 are plotted in figure 1. These were found by trying all combinations and for
each k0 picking the m that gives a bandwidth closest to 1. See also the attached gabor.m.
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Figure 1: Values of m that yield a near-one octave bandwidth for various values of k0

(b) We note that Gaussian fblurring is even in the x-frequency domain, in that B̂(kx, ky) = B̂(−kx, ky).
It follows that

f̂sin(0, 0) = i
(

B̂(k0, 0)m − B̂(−k0, 0)m
)

= i
(

B̂(k0, 0)m − B̂(k0, 0)m
)

= 0.

Thus changing the mean value will have no effect on the sine Gabor filter. On the other hand, the
cosine Gabor filter will have a spike at (kx, ky) = (0, 0), where the value was 0 before. For smaller

bandwidths (i.e., greater values of m), the spike will shrink because for k0 6= 0 B̂(0, 0) < 1 so raising
B̂ to higher powers results in a smaller value in the convolved image. These results are summarized in
figure 2. See also the attached gabor2.m.

(c) In each case the phase disparities tended to group around two points, one at the phase shift φ corre-
sponding to the motion, and one at φ + π. See figure 3. Naturally, the phase shift increased as speed
increased and also as filter frequency increased. For instance, if k0 = 40 then one cycle is 512/40 ≈ 13
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(a) bandwidth 1.15 (m = 11)
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(b) bandwidth 1.06 (m = 13)
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Figure 2: The effect on Ĝcos(·, 0) · Î of adding 100 to the mean value of the image before filtering. For these
examples k0 = 150.

pixels so for vx = 3 pixels the phase difference should be about 90 degrees, representing 1/4 of a cycle
(figure 3(f)). On the other hand if vx = 2 the phase difference should be about 60 degrees, 1/6 of a
cycle (figure 3(e)), which is also what you might expect for k0 = 30 and vx = 3 (figure 3(c)). See also
gabor3.m.

Question 2

(a) For the MATLAB code, see the attached edgedetect.m. The Gaussian filter code was taken from
http://www.cc.gatech.edu/classes/AY2000/cs7495_fall/participants/sashag/ps0/d2gauss.m.

For an edge threshold, the mean of the gradient magnitude plus one standard deviation seemed to
work. To demonstrate the results, the image is darkened and the edges shown in white superimposed
over the image. See figure 4.

(b) The effect of increasing the standard deviation of the Gaussian blur was to increase the number of
points which were detected as edges. This is because blurring has the effect of smoothing the image,
which means that the first derivative will be also vary smoothly, so the second derivative will be smaller,
and will be less likely to jump from positive negative without first passing close to 0. Thus the locus
of points where it is near-zero will increase. See figure 4.

Question 3

By the inverse convolution theorem,

FI(x)W (x) =
1

N
Î(k) ∗ Ŵ (k).

We note that

W (x) =
1

N

N−1
∑

k=0

Ŵ (k) =
1

N

N

2
−1

∑

k=−
N

2

Ŵ (k)ei 2π

N
kx
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(a) k0 = 30, vx = 1

−200 −150 −100 −50 0 50 100 150 200
0

2

4

6

8

10

12

14
x 10

4 k0=30, m=200, vx=2

(b) k0 = 30, vx = 2

−200 −150 −100 −50 0 50 100 150 200
0

1

2

3

4

5

6

7

8

9
x 10

4 k0=30, m=200, vx=3

(c) k0 = 30, vx = 3
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(d) k0 = 40, vx = 1
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(e) k0 = 40, vx = 2
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(f) k0 = 40, vx = 3

Figure 3: The effect of changing k0 and vx on the distribution of phase disparities. For all examples N = 512
and m = 200.
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(a) σ = 0.5
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Figure 4: Edges detected for various blur standard deviations. On top are the original images and below
them are the originals darkened with the detected edge points coloured white.
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and

W (x) = 1 − cos

(

2π

N
x

)

=
1

N

[

−
N

2
cos

(

−2π

N
x

)

+ N −
N

2
cos

(

2π

N
x

)]

=
1

N

[

−
N

2
cos

(

−2π

N
x

)

+ N cos(0) −
N

2
cos

(

2π

N
x

)]

=
1

N

(

−
N

2
ei 2π

N
·−1·x + Nei 2π

N
0·x −

N

2
ei 2π

N
·1·x

)

since

i

(

−
N

2
sin

(

2π

N
x

)

+ N sin(0) −
N

2
sin

(

−2π

N
x

))

= 0.

It follows that Ŵ (0) = N , Ŵ (−1) = Ŵ (1) = −N/2, and Ŵ (k) = 0 for all other values of k. When used in
convolution, this defines a sharpening operation. Thus multiplying the image by W has the same effect as
sharpening on Î . To demonstrate this, figure 5 shows a two-dimensional version of W applied to an image,
and its effect on the Fourier transform of the image. For comparison, the effect of a sharpen convolution is
also shown. See also window.m.

Question 4

(a) In analogy to the uniqueness constraint, we could make the assumption that a single sound source will
only have a single disparity value, where disparity is not in terms of physical location but in terms of
time between a sound reaching the left and right ears. This assumption is somewhat justified, for in
the simple case (ignoring echoes, shape of the head, etc.) a given sound will reach the two ears at two
specific times and it should not be possible to match that specific sound in more than one way. Thus
if a sound is heard that seems to have more than one disparity, it is reasonable to attribute the sound
to two sources, one for each disparity.

Then, the only way the disparity for a source will change would be for the source to move relative to
the ears, and such movement should occur continuously. Thus if the disparity of a sound suddenly
changes it is reasonable to suppose that the new disparity is due to a different sound. This is analogous
to the continuity constraint in Marr and Poggio’s paper.

(b) These constraints break down if we do not ignore complicating factors. For example, echoes will
essentially destroy the uniqueness constraint. As a sound bounces around a room, the disparities of
the echoes heard by the ear can vary wildly and even change in sign (for instance, if a sound source
is to left of the head and bounces off a wall to the right of the head). Yet in most cases the echoes
are not heard separately but are attributed to the single source. In this sense the source has multiple
disparities.

The uniqueness constraint can also be affected by the shape of head and shoulders, particularly if the
sound is changing pitch or has multiple frequencies. In such a case some frequencies will reach the
ears at different relative times than other frequencies, so there will be multiple disparities for a single
source corresponding to different frequencies.

In both these cases, changing the frequency composition and location of the source can have sharp
effects on the disparity. For example, some echoing, resonance, or damping effects might occur only for
a narrow range of frequencies or only for certain locations of the source (or both). As the source enters
the “target” location or frequency, there would be a sudden change in disparity for some frequencies
without any corresponding change in source.
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Figure 5: The effect of a two-dimensional window function on an image and its Fourier transform
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% gabor.m

%

% Find Gabor filters with bandwidth 1.

N = 512; range = (-N/2:N/2-1);

% Set up blur

B = zeros(N,1);

B(1) = .5; B(2) = .25; B(N) = .25;

FB = fft(B);

testk0=49; testm=128;

bestm = zeros(N/2,3);

for k0 = 1:N/2;

bandwidth = zeros(N,2);

for m = 1:N/2;

% compute Gabor filter

G2 = power(circshift(FB,k0),m) + power(circshift(FB,k0),m);

x1 = [0 1.5];

x2 = [0 1.5];

x1found = 0;

% loop through, looking for half-height points

for i = 1:N/2;

current = G2(i);

if (x1found == 0);

if (abs(current-0.5)<=abs(0.5-x1(2)));

x1(2) = current;

x1(1) = i;

else;

x1found = 1;

end

elseif (abs(current-0.5)<=abs(0.5-x2(2)));

x2(2) = current;

x2(1) = i;

end

end

bandwidth(m,:) = [log(x2(1)/x1(1))/log(2) abs(x1(2)-0.5)+abs(x2(2)-0.5)];

% record m-values where half-height is closest to 1

if (abs(bandwidth(m,1)-1) < abs(bestm(k0,2)-1));

bestm(k0,2) = bandwidth(m,1);

bestm(k0,1) = m-1;

bestm(k0,3) = bandwidth(m,2);

end

end

end
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% gabor2.m

%

% Raise mean value and find the effect on the image convolved with Gabor filters.

N = 512;

num_tiles = N/4; width = 32;

maxnoise = 0; % Between 0 and 1. Low maxnoise means low noise.

boosts = [100];

range = (-N/2:N/2-1);

% make blur

B = zeros(1,N);

B(1) = .5; B(2) = .25; B(N) = .25;

B = B’*B;

FB = fftn(B);

testk0 = 150;

testms = [11 12 13 14];

% Make image

Ilayer = zeros(N+3*width,N+3*width);

for n = 1:num_tiles;

x = ceil((N+2*width)*rand);

y = ceil((N+2*width)*rand);

Ilayer(x+1:x+width,y+1:y+width) = rand;

end

Icrop = Ilayer(width+1:N+width,width+1:N+width);

Icrop = Icrop + maxnoise * 2*(rand(N,N) - .5);

for i =1:length(testms);

testm = testms(i);

for j = 1:length(boosts);

boost = boosts(j);

Icrop = Icrop + boost; % add extra to mean value

FI = fftn(Icrop);

Icrop = Icrop - boost; % restore original (we only need FI)

% make Gabor filters

G1 = sqrt(-1)*(power(circshift(FB,[0 testk0]),testm) - \

power(circshift(FB,[0 -testk0]),testm));

G2 = power(circshift(FB,[0 testk0]),testm) + \

power(circshift(FB,[0 -testk0]),testm);

FIG1 = FI.*G1; FIG2 = FI.*G2;

figure; plot((-N/2:N/2-1),fftshift(real(FIG2(1,:))));

title(sprintf(’real(I*G2): k0=%d, m=%d, boost=%d’,testk0,testm,boost));

end

end
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% gabor3.m

%

% Compute phase disparities for gabor-filtered images

% from shiftimage.m.

N = 512;

num_tiles = N/4;

width = 32;

maxnoise = 0; % Between 0 and 1. Low maxnoise means low noise.

variance = maxnoise^2/3;

boost = 100;

range = (-N/2:N/2-1);

B = zeros(1,N);

B(1) = .5;

B(2) = .25;

B(N) = .25;

B = B’*B;

FB = fftn(B);

testk0s = [20 30 40];

testms = [200 200 200];

vxs = [1 2 3];

% make the image

Ilayer = zeros(N+3*width,N+3*width);

for n = 1:num_tiles;

x = ceil((N+2*width)*rand);

y = ceil((N+2*width)*rand);

Ilayer(x+1:x+width,y+1:y+width) = rand;

end

Icrop = Ilayer(width+1:N+width,width+1:N+width);

clear Ilayer

Icrop = Icrop + maxnoise * 2*(rand(N,N) - .5);

disparities = zeros(N,N,length(testms),length(vxs));

for i =1:length(testms);

testm = testms(i);

testk0= testk0s(i);

for j = 1:length(vxs);

vx = vxs(j);

tempIcrop = Icrop + boost;

tempIcrop = tempIcrop-mean(tempIcrop(:));
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FIL = fftn(tempIcrop);

FIR = fftn(circshift(tempIcrop, [0 vx]));

G1 = sqrt(-1)*(power(circshift(FB,[0 testk0]),testm)

- power(circshift(FB,[0 -testk0]),testm));

G2 = power(circshift(FB,[0 testk0]),testm)

+ power(circshift(FB,[0 -testk0]),testm);

FIRG2 = FIR.*G2;

FIRG1 = FIR.*G1;

FILG2 = FIL.*G2;

FILG1 = FIL.*G1;

disparities(:,:,i,j) = atan(real(ifftn(FILG1))./real(ifftn(FILG2)))

- atan(real(ifftn(FIRG1))./real(ifftn(FIRG2)));

figure; data=real(disparities(:,:,i,j))/pi*180; hist(data(:),[-180:10:180]);

title(sprintf(’k0=%d, m=%d, vx=%d’,testk0,testm,vx));

print(’-deps’, sprintf(’gabor%d-%d’, testk0, vx));

close;

end

end
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% edgedetect.m

%

% Take a single frame from shiftimage.m and detect its edges.

clear

N = 128;

k = 10;

epsilon = 0.5;

blurvariance = 2;

num_tiles = 2*N;

width = 8;

maxnoise = 0.2; % Between 0 and 1. Low maxnoise means low noise.

% Generate the image

Ilayer = zeros(N+3*width,N+3*width);

for n = 1:num_tiles;

x = ceil((N+2*width)*rand);

y = ceil((N+2*width)*rand);

Ilayer(x+1:x+width,y+1:y+width) = rand;

end

Icrop = Ilayer(width+1:N+width,width+1:N+width);

clear Ilayer

Icrop = Icrop + maxnoise * 2*(rand(N,N) - .5);

FI = fftn(Icrop);

% Make derivative filters

Dx = zeros(N,N);

Dx(1,2) = -1;

Dx(1,N) = 1;

FDx = fftn(Dx);

Dy = zeros(N,N);

Dy(2,1) = -1;

Dy(N,1) = 1;

FDy = fftn(Dy);

% Make Gaussian filter

FG = fftn(d2gauss(N,blurvariance,N,blurvariance,0));

% Get direction of derivative at every pixel

xderiv = ifftn(FDx.*FG.*FI);

yderiv = ifftn(FDy.*FG.*FI);

grad = atan(real(yderiv)./real(xderiv));

% Compute second derivatives

Gx2 = ifftn(power(FDx,2).*FG.*FI);

Gy2 = ifftn(power(FDy,2).*FG.*FI);
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Gxy = ifftn(FDx.*FDy.*FG);

% Make steerable filter

d2G = power(cos(grad),2).*Gx2 + power(sin(grad),2).*Gy2 + 2*cos(grad)*sin(grad).*Gxy;

% Define minimum gradient magnitude as mean + 1 deviation

threshold = abs(mean([xderiv(:)’ yderiv(:)’])) + std([xderiv(:)’ yderiv(:)’]);

% Find edges

edges = zeros(N,N);

for i = 2:N-1;

for j = 2:N-1;

if (((abs(xderiv(i,j)) > threshold) || (abs(yderiv(i,j)) > threshold))

&& abs(real(d2G(i,j)))<epsilon);

edges(i,j) = 1;

end

end

end

% Display/print image

todisplay = fftshift(Icrop);

figure;

imagesc(todisplay);

%print -deps original-2.eps

axis(’square’);

colormap(’gray’);

% Display/print image with edges outlined

figure;

withedges = todisplay+edges*1.5*max(todisplay(:));

imagesc(min(1.5*max(todisplay(:)),withedges));

%print -deps edges-2.eps

axis(’square’);

colormap(’gray’);
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% window.m

%

% Make the window function and observe its effect on the

% Fourier transform of the image.

N = 256;

W = zeros(1,N);

for x = 1:N;

W(x) = 1-cos(2*pi*x/N);

end

W = W’ * W;

I = double(imread(’KM-III-CD-CVR.gif’));

new = I.*W;

FI = fft2(I);

Fnew = fft2(new);

figure;

imagesc(fftshift(min(100000,abs(FI))));

axis(’square’);

colormap(’gray’);

print -deps window-orig.eps;

figure;

imagesc(fftshift(min(100000,abs(Fnew))));

axis(’square’);

colormap(’gray’);

print -deps window-filtered.eps;

% sharpening function:

S = zeros(1,N);

S(1) = .5;

S(2) = -.25;

S(N) = -.25;

S = S’ * S;

check = ifft2(fft2(FI).*fft2(S));

figure;

imagesc(fftshift(min(25000,abs(check))));

axis(’square’);

colormap(’gray’);

print -deps window-check.eps;
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