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1.  
 

INPUT: a, b, c    From ax2+bx+c 
 
r1=0      These will ultimately form the 
r2=0      solution, with r1 and i1 being 
i1=0      the real and imaginary parts of 
i2=0      the first root, and r2 and i2 
      the parts of the second root. 
 
if a=0 then     First, deal with cases where a=0 
 if b=0 then     
  if c=0 then    
   OUTPUT “True”  0=0 
  else 
   OUTPUT “False” c=0 where c is nonzero constant 

  else 
   r1=-c/b   Easy to find root. 
   OUTPUT r1 
  END     Don’t go to quadratic formula (it 
        will be undefined). 

 
d=b*b-4*a*c     Find the determinant. 
 
if d<0 then     If the determinant is negative, 
 r1=-b/(2*a)    we get roots with imaginary 
 i1=SQRT(ABS(d))/(2*a)  parts. We find the imaginary 
 r2=-b/(2*a)    parts without causing an error 
 i2=-SQRT(ABS(d))/(2*a)  by using absolute value. 
else 
 r1=(-b+SQRT(d))/(2*a);  Otherwise, we can apply the 
 r2=(-b-SQRT(d))/(2*a);  regular quadratic formula. 

   
OUTPUT r1, i1, r2, i2   Send answers in component form. 

 
This algorithm deals with any real number inputs, even if they result in equations that are 
not really quadratic equations (like 072 =−x  and 43 = ). If the input is a quadratic 
equation, it returns the real and imaginary parts of both roots. If it is a linear equation, the 
one unique solution is returned. If a and b are both 0, which means the equation is in the 
form of 0=c , then the equation is evaluated to true or false. 
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2. 
 

INPUT: x, z, n    x = number to find square root of 
      z = initial guess 
for i=1 to n do    n = number of “improvements”—more 
 z=0.5*(z + x/z)   will result in a better guess. 

 
At the end of this algorithm, z is the final guess. The algorithm really requires only one 
input: the number of which to find the square root. For instance, the algorithm could 
make an initial guess of x/2 and go through 20 iterations. However, the most efficient, 
most useful algorithm would ask the user for an initial guess and a number of iterations. 
The former allows the algorithm to get closer to the actual answer faster (assuming the 
initial guess is any good), and the latter allows one to get an idea of how accurate the 
final answer will be. 
 
An alternative method uses r as a sort of cap on the error. In this algorithm, calculation 
continues until the improvement between two guesses is less than or equal to r. Thus, one 
can decide ahead of time the minimum benefit desired from another iteration of the 
algorithm.  
 

INPUT: x, z, r    x = number to find square root of 
      z = initial guess 
old=0      r = minimum amount of improvement 
new=z      between guesses 
 
while ABS(old-new)>r do 
 old=new 
 new=0.5*(new + x/new) 
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3. The simplest way to look at this problem is in terms of the number of black beans. 
Counting zero as even, the number must be either even or odd. Obviously, in order to 
change the parity of this number, we must add or remove an odd number of black beans. 
Ignoring the white beans, we now look at how each possible “grab” affects whether the 
number of black beans in the jar (we’ll call it n) is even or odd: 

a) Two black beans: Two black beans are removed. n-2 black beans remain. Two is 
even. Parity is not affected. 

b) Two white beans: Black beans are not affected, so n (or n-0) beans remain. Zero 
is even. Parity is not affected. 

c) One of each: Black bean remains, so n (or n-0) beans remain. Zero is even. Parity 
is not affected. 

Thus we see that there is no way for an even number of black beans to become an odd 
number of black beans, or vice versa. 

Next, we consider the fact that at some point, there is one bean left. This bean must be 
either black or white. If it is black, then there is an odd number (1) of black beans left. 
Thus, we must have started with an odd number. If it is white, then there is an even 
number (0) of black beans left in the jar. Thus, we must have started with an even 
number. So, to summarize: 

If there is an odd number of black beans in the jar to start, then a black bean 
will be the last one left. If there is an even number of black beans in the jar to start, 
then a white bean will be the last one left. 



Christopher Hundt (110220945) Assignment 1  COMP 250 

< 4 > 

4. The following Java program achieves the lower bound of  22
3 −n  comparisons to find 

the minimum and maximum of a list of numbers. It first divides the numbers into winners 
and losers, and then compares the winners to the winners and the losers to the losers. It 
eventually finds a minimum and a maximum. In fact it has a chance (50%, assuming the 
numbers are sorted randomly in the list) of making only  22

3 −n  comparisons, if n is odd 
(see the comments for section [3] of the program). 
 The program also keeps track of how many comparisons are made, and displays 
that total along with the evaluation of  22

3 −n . 
 Three examples of results can be found below the code. 
 
 
import java.io.*; 
 
/** Class for finding the minimum number in an array, the maximum, or both at 
once, all in the fewest possible comparisons */ 
class MinMax { 
     
    //fields: 
    private static int[] nums; 
    private static int n; 
    private static int c=0; 
     
    //methods: 
    public static void main(String[] args) throws IOException { 
        BufferedReader stdin = new BufferedReader  
            (new InputStreamReader(System.in));  
        System.out.println("Enter the number of numbers:"); 
        String str = stdin.readLine();  
        n = Integer.parseInt(str); 
        nums = new int[n]; 
         
        if (n==0){ 
            System.out.println("Well, never mind then.");} 
        else { 
            System.out.println("Enter the numbers, one on each line:"); 
             
            for (int i = 0; i < n; i++){ 
                str = stdin.readLine(); 
                nums[i] = Integer.parseInt(str);} 
             
            getBoth(nums, n);} 
    }//method main() 
     
    /** Finds and displays the largest and smallest integer from the array */     
    public static void getBoth(int[] A, int size) { 
        //init variables 
        int i, max, min, maxListLength, minListLength, temp; 
        int[] minList, maxList; 
        double best; 
         
        //[1] -- Definition of some variables 
        temp = size/2; 
        minList = new int[temp + 1]; //Add an extra element to MinList in case 
        maxList = new int[temp];     //size is odd (see [3]). 
        minListLength = size/2; //These variables will be updated later if 
        maxListLength = size/2; //necessary (in the case of odd size). 
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        //size of 1 will cause errors later, so deal with it separately 
        if (size==1) 
        { 
            System.out.println("Max: " + A[0] + "\nMin: " + A[0]); 
            System.out.println("No comparisons necessary"); 
            return; 
        } 
         
        //[2] -- Separate 
        //Main loop to separate into two groups ("winners" and "losers") 
        //Goes 2 at a time, and only to (size - 1) because it looks at the 
        //element after i, and there is no element after i=size. Thus, 
        //it skips the last element if size is odd. See [3]. 
        for (i = 0; i < (size - 1); i += 2){ 
            if (greaterThan(A[i], A[i+1])){ 
                maxList[i/2] = A[i]; 
                minList[i/2] = A[i+1]; 
            } 
            else { 
                minList[i/2] = A[i]; 
                maxList[i/2] = A[i+1]; 
            } 
        } 
         
        //[3] -- Special Case: size is odd 
        //The following chunk of code deals with arrays containing an odd 
        //number of numbers. 
        if (size % 2 != 0){ 
            //If there is an odd number of numbers, grab the last number and 
            //deal with it, because the loop didn't. 
             
            //Check the last element against an element of maxList and copy 
            //it to minList or maxList, as is appropriate.  
            //This allows the previous for loop to ignore the last number. 
            if (greaterThan(A[size - 1], maxList[0])){ 
                //The last element of A can replace the first of maxList 
                //if the last element of A "wins," because it means that first 
                //element of maxList is no longer a candidate for the maximum. 
                //This will result in 3/2*n-2.5 comparisons by the end. 
                maxList[0] = A[size - 1]; 
            } 
            else { 
                //If the last element of A loses, we add it to minList and  
                //leave maxList alone. This will result in 3/2*n-1.5 
                //comparisons. 
                minList[minListLength] = A[size - 1]; 
                minListLength++; 
            } 
        } 
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        //[4] -- Find Max and Min 
        //Now, find the max of the "winners" and the min of the "losers": 
        max = getMax(maxList, maxListLength); 
        min = getMin(minList, minListLength); 
         
        //[5] -- Display 
        System.out.println("Max: " + max); 
        System.out.println("Min: " + min); 
        System.out.println("Comparisons: " + c); 
        best = java.lang.Math.ceil(3*size/2.0-2); 
        System.out.println("ceil(3/2*n-2): " + best); 
    }//method getBoth() 
     
    /** Essentially a wrapper for the ">" operation, but also keeps track of  
    how many comparisons are formed via the class variable c */     
    public static boolean greaterThan(int a, int b) 
    { 
        c++; 
        return (a > b); 
    }//method greaterThan() 
     
    /** Returns the largest integer from the array */     
    public static int getMax(int[] A, int size) { 
        int i, max; 
        max = A[0]; 
 
        for (i=1; i < size; i++){ 
            if (greaterThan(A[i], max)) max=A[i];} 
         
        return max; 
    }//method getMax() 
     
    /** Returns the smallest integer from the array */     
    public static int getMin(int[] A, int size) { 
        int i, min; 
        min = A[0]; 
         
        for (i=1; i < size; i++){ 
            if (greaterThan(min, A[i])) min = A[i]; 
        } 
         
        return min; 
    }//method getMin() 
     
}//class MinMax 
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Below are three examples of the display after running the java program MinMax. 
 In the first (leftmost) example, ten numbers are compared. 22

3 −n  works out to be 
an integer (13), so that is exactly how many comparisons the program makes. 
 In the remaining two examples, n is 7. Thus, 22

3 −n  is not an integer, so there is 
some uncertainty as to how many comparisons it will take to find the maximum and 
minimum. In the center example, the “odd number out” compared in section [3] above is 
13, and it is compared to 45, which is in the “never lost” group. Forty-five “wins,” so it 
remains in its same group, and it just took 5.01 22

1 +=+− nn  comparisons to be left with still 
n numbers to eliminate, so it takes  295.1 2

3
2

3 −==− nn  comparisons total. 
 However, in the last example, the odd number out is 891, which is compared to 
768 in the “never lost” group. This eliminates 768 (now it has lost), so after 12

1 +−n  
comparisons we have only 1−n  numbers left to eliminate, so we end up with only 

 285.2 2
3

2
3 −==− nn  total comparisons. (For an explanation of this, see the last 
paragraph of answer 5).

[mimi] [~] java MinMax 
Enter the number of 
numbers: 
10    
Enter the numbers, one on 
each line: 
34 
56 
43 
899 
234 
654 
2 
43    
765 
12 
Max: 899 
Min: 2 
Comparisons: 13 
ceil(3/2*n-2): 13.0 

[mimi] [~] java MinMax 
Enter the number of 
numbers: 
7 
Enter the numbers, one 
on each line: 
12 
45 
76 
390       
99 
65 
13 
Max: 390 
Min: 12 
Comparisons: 9 
ceil(3/2*n-2): 9.0 
 
 

[mimi] [~] java MinMax 
Enter the number of 
numbers: 
7 
Enter the numbers, one 
on each line: 
34 
768 
23 
123 
50      
51 
891 
Max: 891 
Min: 23 
Comparisons: 8 
ceil(3/2*n-2): 9.0 
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5. For this proof, we will call A the array of distinct, positive integers from which to find 
the largest and smallest and n the number of integers in the array. In any comparison, we 
consider the smaller number in the comparison to have “lost” and the larger number to 
have “won.” This allows us to separate the numbers into three broad categories: “never 
won,” “never lost,” and “won and lost.” Any number that has never been compared is in 
both the “never won” and “never lost” categories. 

The first step in this proof is to establish the effect of any comparison between two 
numbers. A comparison counts as a win for one of the numbers and a loss for the other. 
Thus: 

• A number that had never been compared has now either won or lost. It is moved 
to the “never won” category if it loses, or the “never lost” category if it wins. 

• A number in the “never won” category stays in that category if it loses, and 
changes to the “won and lost” category if it wins. 

• A number in the “never lost” category stays in that category if it wins, and 
changes to the “won and lost” category if it loses. 

• A number in the “won and lost” category stays in the same category regardless of 
the outcome of the comparison. 

Next we state that, at any point in the algorithm’s execution, the maximum must be in 
the “never lost” category, and the minimum must be in the “never won” category (1). 
Proof: if the maximum has lost, it means some other number is greater than it, so it 
cannot be the maximum. If the minimum has won, then it is greater than some other 
number, so it cannot be the minimum. 

We also state that any number still in the “never won” category is a candidate for the 
minimum, and any number still in the “never lost” category is a candidate for the 
maximum (2). Proof: two numbers in the “never won” category could not have been 
compared to each other (because comparing always results in a winner), and, if they were 
at any time both compared to some third number, they must have both lost, so no 
inferential conclusion can be drawn, either. Thus, neither can be eliminated as a candidate 
for minimum. The same thinking proves that any number in the “never lost” category is a 
candidate for maximum. 

By statements (1) and (2), then, we know that in order to know for sure that it 
produces the maximum and minimum, an algorithm must continue comparisons until 
exactly one number has never lost, exactly one number has never won, and the rest have 
both won and lost. 

At the beginning of any algorithm for finding the maximum and minimum of A, no 
comparisons have been made, so every number is in both the “never won” and “never 
lost” categories, and is thus a candidate for both maximum and minimum (Statement 2). 
Thus, every number must be compared at least once, or it will still be in both categories. 
Because one comparison compares two numbers, we know that it will require, at best, 2

n  
comparisons to compare every number once. 

Any number that has only been compared once is in the “never won” or “never lost” 
category, and thus is still a candidate for either maximum or minimum (Statement 2). 
Thus, every number must be compared again. However, we keep in mind that we are 
trying to accomplish two separate tasks: finding the maximum and finding the minimum. 
After the initial comparison, these tasks may branch off for efficiency. This is because 
numbers in the “never won” or “never lost” category are each candidates for either the 
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maximum or minimum, and the only other candidates for the same position are the other 
numbers in the same group (Statement 1). Thus, we need only compare numbers that 
have never lost to other numbers in the “never lost” group, and we need only compare 
numbers in the never won group to others in the “never won” group. 

The algorithm’s next step should then be to compare numbers in the same group. 
Each time this happens, one of the two numbers being compared stays in its current 
group, and the other number becomes a part of the “won and lost” group. From Statement 
1, we know that we can discard (and never compare again) any number in the “won and 
lost” group, because it could be neither the minimum nor the maximum. Thus, provided 
the algorithm discards all “won and lost” numbers, every comparison results in one 
elimination, so x comparisons results in x eliminations. Thus, the number of numbers left 
(not discarded) is equal to n minus the number of comparisons (after the initial “phase”). 

Ultimately, all numbers except two must be eliminated. We just determined that at 
any point in the elimination phase xn −  numbers remain, where x is the number of 
comparisons. If 2=− xn , then 2−= nx . Thus, 2−n  comparisons must be performed to 
eliminate all numbers but two. Adding this to the best-case “separation phase,” in which 
the algorithm compared every number once to group them into “never won” and “never 
lost,” we get a minimum of 2)()2( 2

3
2 −=+− nnn  comparisons. 

One final note: in the case of n being odd, 22
3 −n  will not be an integer, so to have 

22
3 −n  comparisons is impossible. Specifically, the initial grouping into winners and 
losers will take more than 2

n  comparisons, for the following reason: At some point, there 
will be only one number left in the “never compared” group, so it must be compared to a 
number that is in the “never won” or “never lost” group. This results in 5.01 22

1 +=+− nn  
comparisons. However, this comparison may eliminate a number (for instance, if the 
“never compared” number loses to a “never won” number, the “never won” number is 
eliminated) or it may not (for instance, if the “never compared” number loses to a “never 
lost” number). Thus, there may remain 32)1( −=−− nn  comparisons before the 
minimum and maximum are found, or there may remain 2−n  comparisons. This means 
that there may be ( )  25.2)3(1 2

3
2

3
2

1 −=−=−++− nnn n  total comparisons, or there may be 
( )  25.1)2(1 2

3
2

3
2

1 −=−=−++− nnn n comparisons. There is no way to write an algorithm 
that is guaranteed to require one number of steps or the other, because it depends on what 
number the “odd number out” is compared to, and there is no way for an algorithm which 
doesn’t know anything about that last number to pick which other number to compare it 
to. It can be guaranteed, though, not to be greater than the second case. Thus, we say that 
in general, the theoretical lower bound for being guaranteed to find the minimum and 
maximum of n numbers is  22

3 −n  comparisons. QED. 


