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Question 1 
 

Fib(n): 
i = 1 
fib1 = 1 
fib2 = 1 
temp = 0 
 
while i < n  do 

temp = fib2 
fib2 = fib1 + fib2 
fib1 = temp 
i = i + 1 

 
return fib2 

 

This algorithm takes as input any nonnegative integer n, and returns the nth Fibonacci 
number. 
 
Explanation: 
 
In the beginning of the while loop, fib2 represents Fib(i), and fib1 represents Fib(i-1). 
If n is 0 or 1, then the while loop is not run at all, and 1 (the correct result) is returned. 
Otherwise, in each iteration, the algorithm effectively puts the sum of fib2 and fib1 
(which sum is equal to Fib(i+1)) in fib2, and puts the previous value of fib2 (which is 
equal to Fib(i)) in fib1. Then, i increases by 1, so fib2 again corresponds to Fib(i), and 
fib1 to Fib(i-1). 
 
The loop will end when i reaches n, so fib2, which is Fib(i) at the end of each iteration, 
will also be Fib(n).
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Question 2 
 

Pas(n, m) 
if m < 0 or m > n then return 0 (1) 
else if n=0 return 1 (2) 
else return (Pas(n-1, m-1) + Pas(n-1, m)) (3) 

 

 
Explanation: 
 
Line 1 (out of the triangle): Because the leftmost column is the 0th column, any request 
for a number in a column below 0 must be 0. Also, because row number n only has up to 
the nth entry, a request for something higher than n (for instance, asking for row 4, 
column 5) must return a 0. 
 
Line 2 (base case): If we’re in the first row, and we have made it by Line 1, we must be 
in row 0, column 0, which is 1. 
 
Line 3 (normal): If we are anywhere on the triangle other than row 0, column 0, we return 
the sum of the numbers (a) immediately above, and (b) immediately above and to the left, 
of the requested position
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Question 3 
 
Given positive integers a (base) and b (exp), the following algorithm finds ba  in time 
proportional to b2log : 

 
t = 1 
n = base 
m = exp 
 
while m 

���
 

if m is even then 
n = n * n  (1) 
m = m/2 

else 
m = m – 1  (2) 
t = t * n 

return t*n 

 
Proof of correctness: Let mtnx = . Immediately after the three variables t, n, and m are 
declared in the beginning of the algorithm, 1=t , base=n , and exp=m . Thus 

expbase== mtnx  
 
In the course of the algorithm, there are two ways that the algorithm will affect t, n, or m: 
 
(1) If m is even, then the following two operations are performed: 
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  We now look at how this affects x: 
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We see that x has not changed.  
 

(2) If x is odd, then: 
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In each iteration of the while loop, one of these two sets of operations is performed. 
Neither t, n, nor m is modified in any other way. Thus, loop invariant expbase=x  
for the entire execution of the algorithm. 
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We next observe that, if 1=m , then 
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We keep this in mind. 
 

Examining the algorithm, we see that in every step m is either reduced by one or divided 
by two. We can express these two operations as ( ) 2

mmf =  and ( ) 1−= mmg . 
 
First, we notice that either of these operations results in m becoming smaller. 
 
Next, we remember that only integers are allowed as input. Thus, ( )mg  must result in an 
integer because 1 is an integer and the set of integers is closed under subtraction. Also, 

( )mf  is only performed on even numbers, which may always be expressed as i2 , where i 
is an integer between 0 and m (having the same sign as m). Thus, 

( )

i

i

m
mf

=

=

=

2
2
2

 

so ( )mf  where m is positive must be a positive integer. So, applied as they are in this 
algorithm, both ( )mf  and ( )mg  will result in a positive integer, and both will decrease 
m. Thus, because of the well foundedness of positive integers, eventually m will become 
1, the smallest positive integer. At this point execution will stop, and tntnx == 1 , so the 
program is correct.
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Question 4 
 

parSeq(n, L, R) 
if L = n then return 1 (1) 
if L = R then return parSeq(n, L+1, R) (2) 
else return (parSeq(n, L+1, R) + parSeq(n, L, R+1)) (3) 

 
Explanation: 
 
This algorithm works by breaking the problem down into smaller problems. It is called 
first in the form parSeq(n, 0, 0), where n is the number of sets of parentheses we are 
looking for combinations of. Each “instance” of the algorithm is given 

(i) n (n),  
(ii) The number of left parentheses “already used” (L), and 
(iii) The number of right parentheses “already used” (R). 

It then determines whether it is appropriate to use another left parenthesis or another right 
parenthesis, or whether both might be appropriate. Each possible added parenthesis is a 
new, smaller problem, and is sent through the algorithm again. The line-by-line 
interpretation follows. 
 
Line 1 (base case): This is the smallest problem. The number of left parentheses equals 
the number of sets of parentheses desired. All the remaining choices must be right 
parentheses, so there is only one possibility. Return 1. 
 
Line 2 (restrict to valid combinations): If there are as many right parentheses as left 
parentheses, then adding another right parenthesis is not allowed until a left parenthesis 
has been added first. Thus, the number of possible combinations is equal to the number of 
combinations after adding one left parenthesis. Return parSeq(n, L+1, R). 
 
Line 3 (normal): It’s too big a problem for the algorithm to solve, but it can be split into 
two smaller problems: one in which a left parenthesis is added, and one in which a right 
parenthesis is added. Since adding a left parenthesis and adding a right parenthesis are the 
only two choices available, and each will result in a unique set of possible sequences, the 
total number of possible combinations is equal to the sum of the number of combinations 
after adding a left parenthesis and the number of combinations after adding a right 
parenthesis. Return (parSeq(n, L+1, R) + parSeq(n, L, R+1)). 
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Question 5 
 
import java.awt.*; 
import java.awt.event.*; 
 
public class Widget extends Frame implements WindowListener 
{ 
    int unit = 4; //The basic unit for the smallest triangle 
 
    int Order = 8; //The starting order 
 
  public void windowClosing(WindowEvent e) { System.exit(0); } 
  public void windowClosed(WindowEvent e) {} 
  public void windowIconified(WindowEvent e) {} 
  public void windowOpened(WindowEvent e) {} 
  public void windowDeiconified(WindowEvent e) {} 
  public void windowActivated(WindowEvent e) {} 
  public void windowDeactivated(WindowEvent e) {} 
 
  public Widget() 
    { 
      Toolkit tk = Toolkit.getDefaultToolkit(); 
      Dimension d = tk.getScreenSize(); 
      int screenHeight = d.height; 
      int screenWidth = d.width; 
 
      addWindowListener(this); 
      setSize(screenHeight, screenHeight); 
      setLocation(screenWidth/4, screenHeight/4); 
      addMouseListener(new MouseAdapter()  
         { 
    public void mouseClicked(MouseEvent evt) 
      { Order = (Order+1) % 10; repaint(); } 
         }); 
    }//method Widget 
 
  public void paint(Graphics g) 
    { 
      g.translate(getInsets().left, getInsets().top); 
      int height = getSize().height - getInsets().top - getInsets().bottom; 
      int width = getSize().width - getInsets().left - getInsets().right; 
 
      setTitle("Sierpinski Widget of order "+Order);    
   g.setColor(Color.black); 
   sier(g,Order,width/2,0); 
 }//method paint 
 
    private double power(int base, int exp){ 
        double t = 1; //This will be used to keep m even 
        int m = exp; 
        double n = (double) base; //We need a double because n may get large 
        //right now, t*(n^m) = base^exp (because t=1, n=base, and m=exp) 
        //t*(n^m) will not change anywhere in the algorithm. 
         
        if (m == 0) return 1; 
         
        while (m != 1) { //When m is one, we're done (t*n = base^exp) 
            if (m % 2 == 0) {//Is n even? 
                n = n*n; //=n^2 
                m = m/2; 
                //does not change t*(n^m) because: 
                //t*(n^m) = t*(n^2)^(m/2) 
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            } 
            else {//If n is not even, make it even. 
                m = m - 1; //so m is divisible by two in the next iteration 
                t = t * n; 
                //does not change t*(n^m) because: 
                //t*(n^m) = (t*n)*n^(m-1) 
            } 
        } 
        return t*n; //base^exp = t*(n^m) = t*n (because m = 1) 
    }//method power 
 
    private void triangle(Graphics g, int x, int y){ 
        //Define variables to be used for other two corners of the triangle 
        int x2 = 0; 
        int x3 = 0; 
        int y2 = 0; //the y value for both other corners is the same 
         
        //X's are easy, because the triangle is oriented vertically, so the 
        //top is, in terms of x, halfway between the other two corners 
        x2 = x + this.unit/2; 
        x3 = x - this.unit/2; 
         
        //Both Y's are the same, and they can be found using the Pythagorean 
        //formula. However, they must be cast to an int for drawLine() 
        y2 = y + (int) java.lang.Math.sqrt(power(this.unit,2) - 
power(this.unit/2,2)); 
         
        //Now, draw the lines: 
        g.drawLine(x, y, x2, y2); 
        g.drawLine(x, y, x3, y2); 
        g.drawLine(x2, y2, x3, y2); 
    }// method triangle 
     
    public void sier(Graphics g, int order, int x, int y){ 
        if (order==0) return; //Don't do anything if there are no triangles! 
        if (order==1) {//order=1: paint the triangle at the specified point: 
            this.triangle(g, x, y); 
        } 
        else { 
            //find L, the length of triangle whose corners will form the 
            //vertices of the next three triangles: 
            int L = (int) power(2, order-2) * this.unit; 
            //use L to determine the location of the corners of the triangle 
            //with sides of length L and vertex (x,y), using geometry and the 
            //Pythagorean formula 
            int xDiff = L/2; 
            int yDiff = (int) java.lang.Math.sqrt(power(L,2) - power(L/2,2)); 
            //Draw widgets for each of the three points, with order one 
            //less than the current order: 
            this.sier(g, order-1, x, y); 
            this.sier(g, order-1, x - L/2, y + yDiff); 
            this.sier(g, order-1, x + L/2, y + yDiff); 
        } 
    } //method sier 
 
    /* Please do not touch the main method. */ 
     public static void main (String[] args) 
    { 
      Widget w = new Widget(); 
      w.show(); 
    } //method main 
}//class Widget 


