COMP 252 Assignment 3

Christopher Hundt (110220945)
March 12, 2003

Question 1

This algorithm uses an array, A. The array’s indexing starts at 1. It is a assumed that the array is
implemented in some way such that parent[A[i]], an integer, can be set and retrieved, as can bit [A[i]],
a bit. It is also assumed that the array’s size can grow as needed. Finally, the algorithm expects to be given
n, the number of the elements in the input sequence.

T <-- new tree

A <-- new array

i, j <-—-1

root <-—- T

tempBit, tempNode, tempParent <-- null
key[root] <-- null

while j < or = n do
tempNode <-- root
while tempNode is not null and j < or = n do
tempParent <-- tempNode
tempBit <-- x_j
if tempBit = O then
tempNode <-- left[tempNode]

else
tempNode <-- right[tempNode]
j<—3+1

tempNode <-- new tree/node

key [tempNode] <-- i

if tempBit = O then
left [tempParent] <-- tempNode
bit[A[i]] <-- 0

else
right [tempParent] <-- tempNode
bit[A[1]] <-- 1

parent[A[i]] <-- key[tempParent]

i<—1i+1

output A

At the end of the loop, T can be discarded, because all its information has been encoded in A. As for the
running time, every individual line in this algorithm runs in time ©(1). There is a nested loop, but in the
deepest level of that loop, j is increased by one in every iteration, and the algorithm halts when j reaches
n. Thus, the total running time must be O(n).



Christopher Hundt COMP 252 Assn. 3 Question 2

Question 2

This algorithm uses an array, kTimes. The array’s indexing starts at 1. The algorithm expects k, the number
of elements desired, and T, a pointer to the root of the tree being considered. It also assumes the existence
of some data type for its tree auxTree that has the operations insert, deletemin, and minimum, and which
would store pointers but sort by timestamp.

auxTree <-- new tree
kTimes <-- new array of size k
i<-—-1

while i < or = k
if T is null then T <-- deletemin(auxTree)
if auxTree is empty then
kTimes[i] <-—- T
i<—-1i+1
if T has two children then
if t[left[T]] < tlright[T]] then
insert (right[T], auxTree)
T <-- left[T]
else
insert(left[T], auxTree)
T <-- right[T]
if T has one child then
T <-- left[T] or right[T] (whichever is not null)
if T has no children then T <-- null
else (auxTree is not empty)
if t[T] < or = t[minimum(auxTree)] then
kTimes[i] <—- T
i<—-13i+1
if t has two children then
if t[left[T]] < tlright[T]] then
insert(right [T], auxTree)
T <—- left[T]
else
insert (left[T], auxTree)
T <-- right[T]
if T has one child then
T <—- 1left[T] or right[T] (whichever is not null)
if T has no children then T <-- null
else (t[T] > t[minimum(auxTree)])
insert (T, auxTree)
T <-- deletemin(auxTree)

output kTimes

The first three lines of this algorithm clearly have running time ©(1). Before we begin the analysis of the
rest of the algorithm, we can assume that we are using some implementation for auxTree that allow the
required operations to be performed in time O(logm), where m is the number of nodes in auxTree. For
instance, red-black trees would meet this requirement. Let us now consider the running time of each line in
the while loop:

1. If the current node is empty then make it the node with minimum timestamp in auxTree. Time is
O(logm).



Christopher Hundt COMP 252 Assn. 3 Question 2

2. If auxTree is empty (Time ©(1) for check):

(a) Set the next element of kTimes and increment the counter. Time is O(1).

(b) Insert the child with the larger timestamp in auxTree, and set the current node to be the smaller
one. Time is O(logm), unless there is one or fewer children, in which case time is ©(1).

3. If auxTree was not empty:

(a) If the timestamp of the current node is less than (or equal to) the minimum timestamp in auxTree
(Time O(logm) for check):

i. Set the next element of kTimes and increment the counter. Time is ©(1).
ii. Insert the child with the larger timestamp in auxTree, and set the current node to be the
smaller one. Time is O(logm), unless there is one or fewer children, in which case time is
O(1).
(b) If the timestamp of the current node was greater than the minimum timestamp in auxTree:

i. Insert the current node in auxTree. Time is O(logm).

ii. Set the current node to the minimum of auxTree (deleting it from auxTree in the process).
Time is O(logm).

There are no nested loops, so none of the instructions will be performed more than once. Even if every
instruction were performed once (which is not the case, because of the if statements), the time would be
O(logm). Thus, the running time is clearly O(logm) for each iteration of the loop.

We also note that there is only one case in which the counter i for the loop is not incremented. This is
the case when auxTree is not empty and the node being considered has a timestamp greater than that of the
minimum from auxTree. However, after this occurs, that minimum is made the current node, so this new
current node will certainly be added to kTimes in the next iteration, so the counter must be incremented
the next time through. Since the counter starts at one, and the loop ends after it reaches k, this means that
the loop executes no more than 2k times. This means that the total running time for the algorithm is no
more than ©(1) + 2kO(logm) € O(klogm).

This leaves one remaining question: what is m? Clearly, m = 0 at the beginning of the algorithm, because
auxTree has just been created. Looking back at the algorithm, we see three cases in which m is increased
(that is, an element is inserted into auxTree):

1. auxTree is empty, the current node has been added to kTimes, and its larger child is added to auxTree,
adding 1 to m. i was just increased by 1.

2. auxTree is not empty, but the current node has a timestamp smaller than the minimum in auxTree,
and the current node’s larger child is added to auxTree, adding 1 to m. i was just increased by 1.

3. auxTree is not empty, and its minimum timestamp is smaller than that of the current node. The
current node is added to auxTree, but then the minimum is deleted, so the net change of m is 0.

This shows that whenever m increases, i increases by the same amount. Since the loop halts when i reaches
k, it is clear that m < k at all times in the algorithm. Thus, the total running time is O(k log k).



Christopher Hundt COMP 252 Assn. 3 Question 3

Question 3

Before we describe how to merge 10n arrays into n arrays, we will consider the problem of simply merging 10
sorted arrays into 1 sorted array. We will call will the arrays x1, ..., =19, and their respective sizes s1, ..., s10,
and we assume the existence of the operation merge (A1, A2), which merges two arrays in time equal to the
sum of the sizes of the arrays. The algorithm follows, with notes on the side:

PART I:
x12 <-- merge(xl, x2) (s12 = s1 + s2)
x34 <-- merge(x3, x4) (s34 = s3 + s4)
x56 <-- merge(x5, x6) (sb6 = s5 + s6)
X78 <-- merge(x7, x8) (s78 = s7 + s8)
x90 <-- merge(x9, x10) (s90 = s9 + s10)
PART II:
x1234 <-- merge(x12, x34) (s1234 = s12 + s34 = s1 + s2 + s3 + s4)
x5678 <-- merge(x56, x78) (s5678 = sb6 + s78 = sb + s6 + s7 + s8)
PART III:
x567890 <-- merge(x5678, x90) (8567890 = 85678 + s90

= gb + 86 + s7 + s8 + 89 + s10)
PART 1IV:
X_tot <-- merge(x1234, x567890) (s_tot = s1234 + s567890

=sl + s2 +s3 +s4 + sb + s6 + s7

output x_tot + 88 + s9 + s10)

We can now analyze the running time of this algorithm. We first note that the running time for any merge
operation is equal to the size of the resulting array, or the number of elements included in it.

Now let us call S the sum of all the sizes; that is, S = s1 + s2 + ... 4+ s19. We see from the sizes of
the resulting arrays that the time for the first part of the algorithm is S, because every element in the
original group of arrays is included exactly once in the resulting arrays. The second part of the algorithm
has time less than S because no elements are included twice in the results and some elements (those in xg
and z10) are not included at all. The third part of the algorithm makes an array whose size is less than S,
so its time is less than S. Finally, the fourth part again has time S. So the total running time R is thus
R<S+S5+5+5=458.

To extend this algorithm to more than 10 arrays, we simply need to repeat it. So the algorithm for
merging 10n arrays would be to simply repeat the above algorithm n times, each time merging 10 arrays
into 1, and then going onto the next 10. For every 10 arrays, the running time would be R < 45, where S is
the total number of elements in those 10 arrays. Since the resulting array is then left alone and the next 10
arrays are considered, every element is in 1 group of 10, and no element is in 2 or more groups of 10. Thus,
the total running time T would be

T = Y R

groups of 10
< 4N,

where N is the total number of elements in all lists together.



Christopher Hundt COMP 252 Assn. 3 Question 4

Question 4

We first consider the problem of merging two arrays of elements. The length of each array cannot be greater
than k, so the running time for a normal merge is no more than k + k = 2k, regardless of the size of n (using
the RAM model, of course, because each k-value holds a number indicating the number of elements equal to
that value, which may need to be added in the merge process).

We also know that k& cannot exceed n. However, we will, for convenience, say that k can exceed n, but
the “effective” value of k is bounded by n. That is, if n < k, then it doesn’t really matter what k is; the
problem is the same as that of merging two lists of unique numbers. For the base case of just merging
two single-element arrays, we see that n = 2, and therefore the “effective” k < 2, so the running time
T(2) <2+ 2 =4. So we say that once n reaches 2, the time is constant.

We can now consider the time to sort as a recurrence for some general values of n and k. Since we must
first have two sorted lists of size n/2, we say

T(n, k) < 2T (g k) + 2k, (1)

However, this is eventually misleading. As we noted before, once n becomes sufficiently small, then the
effective k must shrink as well. Since the number of comparisons will not exceed n, we can say that we will
only use the above recurrence if n > k. Otherwise, a new recurrence comes into play:

T(n,k) < 2T (%k‘)Jrn n<k 2)
Let us now look at the first few terms of recurrence 1, switching the order of the summands:

T(n,k) < 2k+2(2k+2(2k+2(2k+...
2k + 4k + 8k + 16k + . ..

<
< 2'%k+ 2%k + 2%k + 2% + ...+ 2%k + .

Let us call ng the original total number of elements. In the first level of the recursion, which corresponds
to the first term (2k), n = ng. In the next level, corresponding to the term 22k, n = ng/2. In general, in
the ith level of recursion, with corresponding term 2'k, n = ng/2°~!. As noted above, the time at which
n/2 =k, or n = 2k, is the last time we will use recurrence 1 (because for the next term, n = k). We can
now solve for i at this time:

no
2k = 9i—1
2i1€ = No
. ngo
2 = —
k
i = logy 1o
k

After that point, recurrence 2 would come into effect. Expanding the first few terms of recurrence 2, we see
it looks like the following:

T(n,k) < n—i—ZT(g,k)
n n n n
< 2(7 2(7 2(f 2(—
< n+2(g+2(3+2(5+2(5t
< n+n4+n+n+n+...

Again, at each level of the recursion, the size of the n being considered is halved, so that at any level,
n = ng/2"1 (even though it is multiplied by 2¢=1). This time, however, the recursion stops when the size of
the n being considered reaches 2, at which point we say the time is constant. So we solve:

no
9i-1 2
ng = Zl

i = logyno



Christopher Hundt COMP 252 Assn. 3 Question 4

We can now see that the total process would be recurrence 1 repeated log,(ng/k) times (at which point
n < k), followed by recurrence 2 repeated until the total number of repetitions for both times is equal to
log, ng (at which point n = 2), followed by a constant number of steps. We note that this means the number
of repetions of recurrence 2 would be:

n
logy ng — log, ?U = logy no — (logy o — logy k) = logy k

We can also see that, the first time recurrence 2 is used, it will be at depth 7 in recurrence 1, where
i = logy(nop/k). This means that T'(n/2,k) (where n/2 = k) will be multiplied by 2! = ng/k. Since n/2 = k,
this shows us that all the n’s in the n +n + ... form of recurrence 2 will actually be k’s, but they will be
multiplied by ng/k.

This allows us to express a bound for the total running time in the following way:

T(no k) < 2k+22k+...+2l°gz%k+% ktk+... +k+4
|
log, k
logQHTQ

< ¥ Qik+%(1og2k.k+4)
=1

ng
logy

k Z 2 + nglog, k + 4

1=1
< k-2t 4 polog, k44
< 6ng +nglogy k

o
k

IN

no

k

Since 6ny € O(nglogk), and ng is our original n, this shows that the total running time is O(nlog k).



