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1. (a) Suppose Ax ≤ b for some x ≥ 0. Then each component of Ax is less than or equal to the
corresponding component of b. Then (Ax)T ≤ bT , since the corresponding components are the
same. That is, xT AT ≤ bT . Then, since y ≥ 0, xT AT y ≤ bT y. But AT y ≥ 0 and x ≥ 0, so
xT ≥ 0, so xT AT y ≥ 0. Then bT y ≥ 0, a contradiction. Thus our assumption that Ax ≤ b was
wrong, and (LP1) is infeasible.

(b) Suppose Az ≤ 0 and cT z = α > 0. Then, for some feasible solution x and any supposed maximum

M , let k > M−cT x
α

. Then A(x + kz) = Ax + kAz ≤ Ax ≤ b and cT (x + kz) = cT x + kcT z > M .
Thus no maximum could exist, and (LP1) is unbounded.

2. The dual of (LP1) is
min bT y subject to AT y ≥ c, y ≥ 0.

This is equivalent to
max(−bT )y subject to (−AT )y ≤ −c, y ≥ 0.

Then the dual of this is

min(−c)T z subject to (−AT )T z = −Az ≥ −b, z ≥ 0,

which is equivalent to
max cT x subject to Az ≤ b, z ≥ 0,

which, after replacing z by x, is (LP1).

3. Let the non-deterministic Turing machine be N . We will design a deterministic Turing machine M

that decides L(N). We assume that f(|x|) can be computed easily by M and that M has access to N .
We know that N ’s transition relation provides some number of possible transitions from each state for
a given input. We let k be the maximum number of transitions possible from a single state for a single
symbol. Then there are no more than kf(|x|) different computation paths of length no more than f(x).
So we establish an ordering of the possible computation paths for input x by doing a depth-first search
and ordering paths in the order in which they are finished in the DFS. Then M uses the following
algorithm:

1 for each path of computation on x

2 do run N along computation path x until a halting state (for at most f(|x|) steps)
3 if in state true

4 then return true

5 “Back up” to last decision made where there was another untried choice
6 return false
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When we say “back up,” we mean restore the tape to the point where the last decision was made
between different possible transitions. This can be done if we store a list of the decisions made on the
current path and a second list of the symbols that are written over, so they can be replaced. Then, for
example, if we wrote a symbol u where another symbol v used to be and then moved to the right, we
move to the left and replace u with v.

Regarding the time for this algorithm, each path is traversed at most once and takes time no more
than f(|x|), and there are no more than kf(|x|) paths. Thus a very rough upper bound for the time is
f(n)k(n).

4. By definition of NTIME, Any machine in NTIME(f(n)) can be considered as the machine N in the
solution above. In the machine M described above, there is no more than f(|x|) tape used in following
a path in N , since each path has no more than f(|x|) steps, so can only write to f(|x|) tape cells,
and the “backing up” process makes sure the same space on the tape is re-used. The only extra space
required to store information is to store the current set of decisions made (of which there are no more
than f(|x|) since that is the limit of the path length) and the symbols overwritten for the current
path (of which there are no more than f(|x|) since there are only f(|x|) symbols used in running a
single path). Thus the total tape size for a deterministic machine M simulating the non-deterministic
machine N is no more than 3f(|x|), so N ∈ SPACE(f(n)).
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