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1. We call this problem Subset-Cover.

We first consider that a certificate for this problem can be the desired subset S ′ (which is clearly
smaller in size than the input). Using a naive method, we can simply look through S ′ for a member
of each subset in C. This would take no more than |S||C||S| = |S|2|C| time, since |S′| ⊆ S and
each subset in C is no bigger than S. Thus we can verify a yes-instance in polynomial time. Thus
Subset-Cover ∈ NP.

We now show that Vertex-Cover ≤ Subset-Cover. Let (G, k) be an instance of Vertex-Cover,
where G = (V, E). Then we define R(G, k) = (S, C, K), where

• S = V ,

• C = {{u, v} | (u, v) ∈ E}, and

• K = k.

Suppose (G, k) ∈ Vertex-Cover. Then there is some subset V ′ ⊆ V of cardinality no more than k

such that every edge in E has at least one endpoint in V ′. Let S′ = V ′. S′ has size no more than K,
since k = K. Then, for each {u, v} ∈ C, we have (u, v) ∈ E, so either u ∈ V ′ or v ∈ V ′. Thus either
u ∈ S′ or v ∈ S′. Therefore each member of C has at least one of its elements in S ′ and |S′| ≤ K, so
R(G, k) = (S, C, K) ∈ Subset-Cover.

Now suppose R(G, k) = (S, C, K) ∈ Subset-Cover. Then let V ′ = S′. Then |V ′| = |S′| ≤ K = k.
Also, for each edge (u, v) ∈ E, the set {u, v} ∈ C, so then u ∈ S ′ or v ∈ S′. Thus either u ∈ V ′ or
v ∈ V ′ for every edge. Thus V ′ is a subset of V of cardinality no more than k such that, for each edge
in E, at least one endpoint is in V ′. Thus (G, k) ∈ Vertex-Cover.

Finally, we note that the construction of R(G, k) involves nothing more than a direct copying of the
input, with perhaps a slight change in format, so the time to compute it is obviously polynomial.

Thus Subset-Cover is NP-complete.
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2. We call this problem Isomorphic-Subgraph.

First, note that we can use the subset V ′′ and the function f as a certificate. |V ′′| ≤ |V | and f can be
encoded in maximum time proportional to |V | (since f is surjective and |V ′| = |V ′′|, so f is bijective),
so the certificate is of size polynomially related to the input size. Then, we can naively check the V ′′

meets the given conditions by looping through the members of V ′′ and, for each one, looping through
E to find related edges and then looping through f (which has no more than |V ′′| transitions) and then
E′ and f again to make sure that these edges are matched. Thus the maximum time is proportional to
|V ′′||E||V ′′||E′||V ′′| = |V ′|3|E||E′|, so it takes time polynomial with the input to verify a yes-instance.
Thus Isomorphic-Subgraph ∈ NP.

We now show that Clique ≤ Isomorphic-Subgraph. Given an instance (G, k) of Clique, we define
R(G, k) = (G, H) where H is the fully connected graph with k vertices.

Suppose (G, k) ∈ Clique where G = (V, E). Then there exists some subset V ′′ ⊂ V of size k

such that every vertex in V ′′ has an edge in E to every other vertex in V ′′. Thus (V ′′, E′′), where
E′′ = {(u, v) ∈ E | u, v ∈ V ′′}, is a fully connected graph of size k and the isomorphism is obvious.
Thus R(G, k) = (G, H) ∈ Isomorphic-Subgraph.

Now suppose R(G, k) = (G, H) ∈ Isomorphic-Subgraph where G = (V, E). Then there is an
isomorphism between a subgraph of G and the fully connected graph of size k. Thus V contains a fully
connected subset of size k, so (G, k) ∈ Clique.

Thus Isomorphic-Subgraph is NP-complete.
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3. We call this problem Cycle-Cover.

We use the subset V ′ as a certificate. We then take V \V ′, which we can do in polynomial time,
and check with DFS (in polynomial time) whether it has any cycles. If V \V ′ has no cycle, then any
previously existing cycle was removed by eliminating one of its vertices, so V ′ had a vertex in each
cycle. If V \V ′ has a cycle C, then none of the vertices for C were in V ′, so V ′ did not cover all the
cycles in G. Thus this test verifies a yes-instance. Thus Cycle-Cover ∈ NP.

We note that Vertex-Cover ≤ Cycle-Cover. For an instance (G, k) of Vertex-Cover we define
R(G, k) = (G′, k), where G′ = (V, E′) and E′ = {(u, v) | (u, v) ∈ E}. That is, G′ is G with each
undirected edge replaced with a directed edge in each direction.

Suppose (G, k) ∈ Vertex-Cover where G = (V, E) and G′ = (V, E′) as defined above. Then there is
a subset V ′ ⊂ V with |V ′| ≤ k such that every edge in E has at least one endpoint in V ′. Then, for
that subset V ′ in the graph G′, every edge in E′ has at least one endpoint in V ′. Then, since directed
cycles are made of edges, it is clear that at least one vertex from every cycle in G′ is in V ′. Thus
R(G, k) = (G′, k) ∈ Cycle-Cover.

Now suppose R(G, k) = (G′, k) ∈ Cycle-Cover where G = (V, E) and G′ = (V, E′) as defined above.
Then there is a subset V ′ ⊆ V with |V ′| = k such that V ′ contains at least one vertex from every
directed cycle of G′. But we defined G′ so that every edge has a symmetric back-edge with which it
forms a cycle of length two. Such cycles involve only two vertices, and both edges in the cycle have
both vertices as endpoints. Thus, if every such cycle has a vertex in V ′, then every edge in E′ has an
endpoint in V ′. But since every directed edge in E ′ corresponds to an undirected edge in E with the
same endpoints, every edge in E has an endpoint in V ′. Thus V ′ is a subset of V of size k such that
every edge in E has at least one endpoint in V ′, and (G, k) ∈ Vertex-Cover.

The time to compute R(G, k) is polynomial in the input since the only modification is to iterate through
the edges in E and add two edges in G′ for each one.

Thus Cycle-Cover is NP-complete.
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